

ENERGY GENERATION FROM FOOD WASTE IN UZBEKISTAN

Supervisor:

Assistant:

prof. Obid Tursunov

Abdulhay Karimov

Structure of the Presentation

ENERGY GENERATION FROM FOOD WASTE IN UZBEKISTAN

Significance of research work	 Justification of the topic: 1. Problems caused by food waste 2. Opportunities available in food waste 3. Research on this field in Uzbekistan (In order to justify the relevance of the topic, problems and possibilities were studied as organic waste. Because, food waste is often mixed with other household waste) 				
	NEGATIVE EFFECTS	POTENTIAL (OPPORTUNITIES		
Problems	Effect on:	Potential	How?		
	To the environment:	Energy of	Energy opportunities:		
Water pollution	Liquid waste mixture (leachate) poisons surrounding/groundwater when it reaches it	Possibilities of obtaining solid, liquid and gaseous fuels	Through AD, Pyrolysis and Gasification technologies		
Air pollution	through CH4 and CO2 gases (accounting for 90% of total gases released from MSW)	Biochar	Through torrefaction technology		
Soil contamination					
To human health:		Minera	Mineral fertilizer:		
microbial diseases					
infectious and chronic diseases	chronic respiratory diseases, lung cancer, intestinal diseases,				
Toxic gases		After decomposition/digestion pr	ocesses, remaining substance can be		
Biological pathogens stomach and intestinal diseases		used as a bio rerunzer and supprementary rerunzer			
Depression and other psychological stress mental health issues			4		

SUMMARY OF THE RESEARCH TOPIC

JUSTIFICATION:

THE NEED TO ELIMINATE THE NEGATIVE EFFECTS OF WASTE ON THE ENVIRONMENT

LACK OF KNOWLEDGE IN UZBEKISTAN ABOUT THE USE OF WASTE FOR ENERGY PURPOSES

INSUFFICIENT WASTE RECYCLING RATES

Waste to Energy The Win Win Deal!

MSW Recycling data in Uzbekistan in 2021

Used methods on each analysis, tests

	Methods	Purpose	Calculation equations	Standard				
	1. Current MSW management analysis in Uzbekistan							
1.1.	Internet search, phone calls, face to face interviews	For collecting necessary data	-	-				
		2. Social Survey						
2	An approach used by Sarbassov et al. 2019	In order to study the behavioral attitudes of residents in the research object	-	-				
	3. Morphological composition study of MSW							
3.1.	Waste sampling	It ensures the reliability of the process and results when studying the physc-chemical characteristics and morphology of waste.	-	ASTM D 5231				
4. Proximate analysis								
4.1.	Moisture content	Determination of the moisture content of the sample	%Moisture content= $\frac{Wet massDry mass.}{Wet mass} \times 100\%$	ASTM-E871				
4.2.	Volatile matter content	Determination of the amount of volatile particles (gases) released from the substance as a result of sample combustion	%Volatile matter. = $\frac{Mass loss \times 100}{sample mass}$ - {%Mositure content}	PN-EN 15148– 3:2010.900				
4.3.	Fixed carbon content	Determination of the amount of carbon that remains after the separation of volatile substances in the sample	%Fixed carbon= 100 - (% <i>M</i> . <i>C</i> + % <i>Ash</i> . <i>C</i> + % <i>V</i> . <i>M</i> . <i>C</i>)	PN-EN 14775:2010				
4.4.	Ash content	Determination of the amount of powdery residue that remains when a substance is thermally decomposed (fully burned)	$\%Ash\ content = \frac{Sample\ mass \times 100}{sample\ mass}$	PN-EN 14775:2010				
5. Ultimate analysis								
5.1	Ultimate analysis	Determination of the amount of Carbon (C), Hydrogen (H), Nitrogen (N), Oxygen (O) and Sulfur (S) in the sample	Elemental Analysis is determined by laboratory equipment	ASTM D3176				
6. Calorific value estimation								
6.1.	Calorific value of MSW (experimentally)	Determining accurate/real heating value of a biomass sample	-					
6.2.	Calorific value of MSW (theoretically)	Determining theoretical heat value of a biomass sample	* Heat energy $\left(\frac{Kj}{kg}\right) = 337C + 1428\left(H - \frac{O}{8}\right) + 9S$	PN-EN 14918:2010				

f solid household waste

oun

al energy

nem

The object of research and the building where the questionnaire was conducted and Social Survey procedure

Conduct a social survey

Study the articles on the survey, determine the expected results of the survey

2	Prepare a questionnaire
3	Define the object of the survey
4	Conduct a survey
5	Recording, processing and analysis of results

Prepare a report on the work done

Administrative division of the city of Tashkent::

- 1. Bektemir
- 2. Chilanzar
- 3. Yashinabad
- 4. Mirabad
- 5. Mirzo Ulugbek
- 6. Sergeli
- 7. Shaykhontokhur
- 8. Almazar
- 9. Uchtepa
- 10. Yakkasaray
- 11. Yunusabad

10

Residential building conducted social survey

A brief description of study object: Population: 20448 (approx.) Area: 0,64 km2 Residential bulidings: 69 pcs. Schools, kindergardens: 7 pcs. Supermarkets: 2 pcs.

Preparing for the study of the composition of waste

82.1 kg of waste was prepared for morphology study

A flat place was chosen for the experiment. In order to make the experiment clean and orderly, a 1.5x3 m2 surface was covered with plasterboard. In order to avoid various external influences, stones were collected around the film.

Preparations were made to study the composition of household waste

Footages from the process

Using the "Quartering" method, waste was divided into 4 equal parts

Cross-contradictory fragments were removed and the remaining fragments were collected in separate packets for analysis

The surface of the film was cleaned for further processing

Footage from the process

The waste that was found to be heavy was re-released After the 3rd mixing, the waste sorting process began

In this case, the following main types of household waste were sorted:

- Paper
- Plastic
- Food waste
- Textile
- Metal
- Glass
- Others

Footage from the process Final weighting

Sorting was done based on the international standard ASTM D 5231

Results

The results of the survey conducted at the facility

MSW composition in Chilanzar 23rd massive, Tashkent city

Proximate and Ultimate analysis results

Proximate analysis results

Results of the energy value determination experiment

Results of energy value (high heat value) analysis

Analysis/type	Textile	Mixed waste	Plastic	Food waste
Moisture %	3.51	35.96	0.94	41.24
Volatile	82.26	46.62	95.5	36.84
matter%				
Fixed	7.22	10.29	1.59	16.61
carbon%				
Ash content%	7.01	7.13	1.97	5.31
Used lab				
equipment:	Elura I GA Thermostep analyzer		yzei	

Ultimate analysis results

Elements/type	Textile	Mixed waste	Plastic	Food waste
C %	45.2355	28.9875	79.5422	25.8168
Н %	8.3417	15.6201	13.5442	16.0271
S %	0.0528	0.1703	0.0383	0.1950
N %	0.0439	1.6871	0.0477	2.0231
*O %	46.3261	53.535	6.8276	55.938
Used lab equipment:	CHS-580 analyzer by Eltra			

* Constant oxygen amounts are calculated by difference Note: The results presented are the average values of the results obtained from 3 repetitions of the experiments

Proximal and Final analyzes were determined in cooperation with the international laboratory "Energy and Fuels" of the Academy of Mining and Metallurgy named after Stanislav Stashits in Cracow, Poland.

	Textile	Mixed wa	ste Plastic	Food waste
Gross energy content, (Mj / kg)	<u>18,63</u>	<u>24,39</u>	<u>47,17</u>	<u>23,87</u>
Laboratory Equipment:	Laboratory Equipment: Leco AC calorimeter			
Theoretical calculation results of energy value (high heat value)				
Parameters	Textile	Mixed waste	Plastic	Food waste
С %	45,2355	28,9875	79,5422	25,8168
Н%	8,3417	15,6201	13,5442	16,0271
S %	0,0528	0,1703	0,0383	0,195
N %	0,0439	1,6871	0,0477	2,023
* O %	46,3261	53,535	6,8276	55,938
Theoretical Energy content, (kJ / kg)	<u>18,8875</u>	<u>22,5198</u>	<u>44,928,4</u>	<u>21,6037</u>

The theoretical heat value was calculated using the Dulong formula:

Higher heating value
$$\left(\frac{Kj}{kg}\right) = 337C + 1428\left(H - \frac{O}{8}\right) + 9S$$

CONCLUSIONS

PROXIMATE ANALYSIS RESULTS:

 Food waste samples taken from the study object have 41.24% moisture, 36.84% Volatile matter, 16.61% Fixed carbon and 5.31% ash. Based on the past works, Volatile matter and Fixed carbon contents are essential indicators of fuel properties of a material, which in our work this was 53.45%.

ULTIMATE ANALYSIS RESULTS

- Food waste samples taken from the study object have 25.8% Carbon, 16% Hydrogen, 0.19% Sulphur, 2.03% Nitrogen and 55.9% Oxygen.
- Calorific value estimation results: According to laboratory analysis, food waste has 23.87 Kj/kg heating energy. When theoretical calculation method by using Dulong's formula used, this value constituted 21.6 Kj/kg.

WASTE TO

Co-funded by the Erasmus+ Programme of the European Union

ENERGY.

Thank you for your attention!