

in Transition Economies

Agricultural Extension and Technical Efficiency: an Empirical Assessment in Central Asia

Mukhayyo Djuraeva

IAMO Forum 2020, "Digital transformation – towards sustainable food value chain in Euroasia" 24-26 June

- Introduction
- Methodology
 - Study area
 - Theoretical and conceptual frameworks
 - Empirical models
- Results and Discussion
- Conclusion

Introduction

Leibniz Institute of Agricultural Development in Transition Economies

- The World Development Report prominently raised the issue of *agricultural productivity slowdown* (World Bank, 2008);
- An agricultural extension services has drawn attention of many researchers as a tool to boost productivity of farmers (FAO, 2015; Lampach et al., 2018; Ma et al., 2018);
- The studies on agricultural extension systems in Central Asia are very limited (Kazbekov and Qureshi, 2011; Vakhabov et al. 2006; Pulatov et al. 2016);
- No study has quantitatively analyzed the impact of agricultural extension service on technical efficiency of farmers in Central Asian regional context.

Leibniz Institute of Agricultural Development in Transition Economies

Table 1. Descriptive statistics (for 2014-2015 growing season)

Variables	Unit of	Observations	Statistics					
	measurement		Mean	Std. Dev.	Min	Max		
Inputs and output								
Wheat	kilograms	316	93578.99	72238.09	4000	444360		
Land	hectare	316	39.55	199.58	1	3535		
Labor	man-days	316	1556.21	1242.93	120	8350		
Seed	kilograms	312	5781.68	4879.75	140	44000		
Fertilizer	thousand UZS	312	12100.00	13300.00	0	149000		
Machinery	thousand UZS	312	912.04	9296.53	0	144207		
Farm specific variables								
Age	years	316	47.05	10.01	20	83		
Male	dummy	316	0.96	0.21	0	1		
Education	measured as a score	316.00	2.11	1	1	3.00		
Irrigation	dummy	316	0.86	0.34	0	1		
Extension visits	total number of visits per year	282	7.82	7.18	0	30		
State extension services	dummy	201	0.24	0.43	0	1		
Cooperation	dummy	316	0.66	0.48	0	1		
Extension approach	measured as a score	208	3.00	1.70	1	7		

www.iamo.de/en

Leibniz Institute of Agricultural Development in Transition Economies

Table 2. Eslasticities of mean output of Translog stochastic productionfunction.

Variables	Mean	Std. Err.	[95% Conf. Interval]	
Land	0.84***	0.03	0.79	0.90
Labor	0.10***	0.02	0.06	0.14
Seed	0.03***	0.02	-0.01	0.08
Fertilizers	0.10***	0.01	0.09	0.11
Machinery	0.08	0.01	0.07	0.09

Note: ***significant at 1%; **significant at 5%; *significant at 10%.

Results and Discussions

Leibniz Institute of Agricultural Development in Transition Economies

Figure 2. Percentage of technical efficiency distribution range of preferred model by heterogeneity effects

www.iamo.de/en

Leibniz Institute of Agricultural Development in Transition Economies

- On average, farmers realize 81% of the potential frontier output, having considerable gap in achieving full potential output;
- Agricultural extension services are found to have positive and statistically significant effect on technical efficiency of wheatproducing farmers;
- Among farm characteristics, age and education are found as significant determinants in technical efficiency of farmers;
- The impact of irrigation on technical efficiency is found to be highly statistically positive;
- Production efficiency does not response to whether the extension services are state-owned or otherwise.

Thank you for attention!

References

- Awotide, B. A., Karimov, A. A., Diagne, A. J. A., and Economics, F. (2016). Agricultural technology adoption, commercialization and smallholder rice farmers' welfare in rural Nigeria. 4, 3.
- FAO, I. a. W. (2015). "The State of Food Insecurity in the World 2015'.
- Kazbekov, J., and Qureshi, A. S. (2011). "Agricultural extension in Central Asia: Existing strategies and future needs," IWMI
- Kumbhakar, S. C., Wang, H. J., and Horncastle, A. P. (2015). "A practitioner's guide to stochastic frontier analysis using Stata," Cambridge University Press.
- Kumbhakar, S., and Lovell, C. (2000). Stochastic Frontier Analysis, 2000. Cambridge University Press.
- Kumbhakar, S. C., Ghosh, S., and McGuckin, J. T. (1991). A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms. Journal of Business & Economic Statistics 9, 279-286.
- Lampach, N., Nguyen-Van, P., and To-The, N. (2018). Measuring the Effect of Agricultural Extension on Technical Efficiency in Crop Farming: Meta-Regression Analysis. Bureau d'Economie Théorique et Appliquée.
- Ma, W., Renwick, A., Yuan, P., and Ratna, N. (2018). Agricultural cooperative membership and technical efficiency of apple farmers in China: An analysis accounting for selectivity bias. Food Policy 81, 122-132.
- Owens, T., Hoddinott, J., and Kinsey, B. (2003). The Impact of Agricultural Extension on Farm Production in Resettlement Areas of Zimbabwe. Economic Development and Cultural Change 51, 337-357.
- Vakhabov, A., Muminov N, Djurakhanov F, and A, K. (2006). The accession of Uzbekistan to the world tradeorganization: challenges and opportunities for the food processing industry. Uzbekistan Economy. In "Stat Anal Rev".
- World Bank (2008). World Development Report In "World Bank. 2007. World Development Report 2008 : Agriculture for Development" (W. D. Report, ed.). World Bank, Washington, DC.